Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Life Sci ; 313: 121271, 2023 Jan 15.
Article in English | MEDLINE | ID: covidwho-2159516

ABSTRACT

Mitochondria are dynamic cellular organelles with diverse functions including energy production, calcium homeostasis, apoptosis, host innate immune signaling, and disease progression. Several viral proteins specifically target mitochondria to subvert host defense as mitochondria stand out as the most suitable target for the invading viruses. They have acquired the capability to control apoptosis, metabolic state, and evade immune responses in host cells, by targeting mitochondria. In this way, the viruses successfully allow the spread of viral progeny and thus the infection. Viruses employ their proteins to alter mitochondrial dynamics and their specific functions by a modulation of membrane potential, reactive oxygen species, calcium homeostasis, and mitochondrial bioenergetics to help them achieve a state of persistent infection. A better understanding of such viral proteins and their impact on mitochondrial forms and functions is the main focus of this review. We also attempt to emphasize the importance of exploring the role of mitochondria in the context of SARS-CoV2 pathogenesis and identify host-virus protein interactions.


Subject(s)
Mitochondria , Viral Proteins , Humans , Calcium/metabolism , Mitochondria/metabolism , Mitochondria/virology , RNA, Viral/metabolism , Viral Proteins/metabolism , Viruses/pathogenicity
2.
J Biol Chem ; 298(9): 102280, 2022 09.
Article in English | MEDLINE | ID: covidwho-1936718

ABSTRACT

Transmissible gastroenteritis virus (TGEV), a member of the coronavirus family, is the pathogen responsible for transmissible gastroenteritis, which results in mitochondrial dysfunction in host cells. Previously, we identified 123 differentially expressed circular RNAs (cRNA)from the TGEV-infected porcine intestinal epithelial cell line jejunum 2 (IPEC-J2). Previous bioinformatics analysis suggested that, of these, circBIRC6 had the potential to regulate mitochondrial function. Furthermore, mitochondrial permeability transition, a key step in the process of mitochondrial dysfunction, is known to be caused by abnormal opening of mitochondrial permeability transition pores (mPTPs) regulated by the voltage-dependent anion-selective channel protein 1 (VDAC)-Cyclophilin D (CypD) complex. Therefore, in the present study, we investigated the effects of circBIRC6-2 on mitochondrial dysfunction and opening of mPTPs. We found that TGEV infection reduced circBIRC6-2 levels, which in turn reduced mitochondrial calcium (Ca2+) levels, the decrease of mitochondrial membrane potential, and opening of mPTPs. In addition, we also identified ORFs and internal ribosomal entrance sites within the circBIRC6-2 RNA. We demonstrate circBIRC6-2 encodes a novel protein, BIRC6-236aa, which we show inhibits TGEV-induced opening of mPTPs during TGEV infection. Mechanistically, we identified an interaction between BIRC6-236aa and VDAC1, suggesting that BIRC6-236aa destabilizes the VDAC1-CypD complex. Taken together, the results suggest that the novel protein BIRC6-236aa encoded by cRNA circBIRC6-2 inhibits mPTP opening and subsequent mitochondrial dysfunction by interacting with VDAC1.


Subject(s)
Inhibitor of Apoptosis Proteins , Mitochondria , Mitochondrial Permeability Transition Pore , RNA, Circular , Transmissible gastroenteritis virus , Animals , Calcium/metabolism , Cell Line , Cyclophilin D/metabolism , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Mitochondria/virology , Mitochondrial Permeability Transition Pore/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Swine , Transmissible gastroenteritis virus/genetics , Transmissible gastroenteritis virus/physiology , Voltage-Dependent Anion Channel 1/metabolism
3.
Bull Exp Biol Med ; 172(4): 495-498, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1756827

ABSTRACT

The measurement of the level of mitochondrial DNA (mtDNA) in the blood is a difficult problem due to high variability of mitochondrial genes, deletions in the mitochondrial genome in some pathological conditions, different sources of mtDNA into the bloodstream (mtDNA from tissues, from blood cells, etc.). We designed primers and TaqMan probes for highly conserved regions of the ND1 and ND2 genes outside the mitochondrial deletions "hot zones". For standardizing the technique, the true concentration of low-molecular-weight mtDNA was determined by real-time PCR for two targets: a fragment of the ND2 gene (122 bp) and the ND1 and ND2 genes (1198 bp). The sensitivity and specificity of the developed approach were verified on a DNA pool isolated from the blood plasma of healthy donors of various nationalities. The concentration of low-molecular-weight mtDNA in the blood plasma of two patients with COVID-19 was monitored over two weeks of inpatient treatment. A significant increase in the content of low-molecular-weight mtDNA was observed during the first 5 days after hospitalization, followed by a drop to the level of healthy donors. The developed technique makes it possible to assess the blood level of low-molecular-weight mtDNA regardless of the quality of sampling and makes it possible to standardize this biological marker in a wide range of infectious and non-infectious pathologies.


Subject(s)
COVID-19/metabolism , Cell-Free Nucleic Acids/genetics , DNA, Mitochondrial/genetics , NADH Dehydrogenase/genetics , Real-Time Polymerase Chain Reaction/standards , Adult , Aged , COVID-19/virology , Case-Control Studies , Cell-Free Nucleic Acids/blood , DNA Primers/chemical synthesis , DNA, Mitochondrial/blood , Female , Humans , Male , Middle Aged , Mitochondria/genetics , Mitochondria/virology , NADH Dehydrogenase/blood , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/pathogenicity
4.
Int J Mol Sci ; 23(4)2022 Feb 14.
Article in English | MEDLINE | ID: covidwho-1686821

ABSTRACT

The ongoing COVID-19 pandemic dictated new priorities in biomedicine research. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, is a single-stranded positive-sense RNA virus. In this pilot study, we optimized our padlock assay to visualize genomic and subgenomic regions using formalin-fixed paraffin-embedded placental samples obtained from a confirmed case of COVID-19. SARS-CoV-2 RNA was localized in trophoblastic cells. We also checked the presence of the virion by immunolocalization of its glycoprotein spike. In addition, we imaged mitochondria of placental villi keeping in mind that the mitochondrion has been suggested as a potential residence of the SARS-CoV-2 genome. We observed a substantial overlapping of SARS-CoV-2 RNA and mitochondria in trophoblastic cells. This intriguing linkage correlated with an aberrant mitochondrial network. Overall, to the best of our knowledge, this is the first study that provides evidence of colocalization of the SARS-CoV-2 genome and mitochondria in SARS-CoV-2 infected tissue. These findings also support the notion that SARS-CoV-2 infection can reprogram mitochondrial activity in the highly specialized maternal-fetal interface.


Subject(s)
Mitochondria/virology , Nucleic Acid Amplification Techniques/methods , Placenta/virology , RNA, Viral/metabolism , SARS-CoV-2/genetics , Adult , COVID-19/pathology , COVID-19/virology , DNA Probes/metabolism , Female , Humans , Pilot Projects , Placenta/pathology , Pregnancy , SARS-CoV-2/isolation & purification
5.
Sci Rep ; 11(1): 3, 2021 01 08.
Article in English | MEDLINE | ID: covidwho-1387457

ABSTRACT

SARS-CoV-2 induces a muted innate immune response compared to other respiratory viruses. Mitochondrial dynamics might partially mediate this effect of SARS-CoV-2 on innate immunity. Polypeptides encoded by open reading frames of SARS-CoV and SARS-CoV-2 have been shown to localize to mitochondria and disrupt Mitochondrial Antiviral Signaling (MAVS) protein signaling. Therefore, we hypothesized that SARS-CoV-2 would distinctly regulate the mitochondrial transcriptome. We analyzed multiple publicly available RNASeq data derived from primary cells, cell lines, and clinical samples (i.e., BALF and lung). We report that SARS-CoV-2 did not dramatically regulate (1) mtDNA-encoded gene expression or (2) MAVS expression, and (3) SARS-CoV-2 downregulated nuclear-encoded mitochondrial (NEM) genes related to cellular respiration and Complex I.


Subject(s)
COVID-19/virology , DNA, Mitochondrial/genetics , Mitochondria/genetics , SARS-CoV-2 , Transcriptome , Cell Line , Humans , Mitochondria/virology
6.
Int J Mol Sci ; 22(15)2021 Jul 30.
Article in English | MEDLINE | ID: covidwho-1335100

ABSTRACT

Mitochondria are vital intracellular organelles that play an important role in regulating various intracellular events such as metabolism, bioenergetics, cell death (apoptosis), and innate immune signaling. Mitochondrial fission, fusion, and membrane potential play a central role in maintaining mitochondrial dynamics and the overall shape of mitochondria. Viruses change the dynamics of the mitochondria by altering the mitochondrial processes/functions, such as autophagy, mitophagy, and enzymes involved in metabolism. In addition, viruses decrease the supply of energy to the mitochondria in the form of ATP, causing viruses to create cellular stress by generating ROS in mitochondria to instigate viral proliferation, a process which causes both intra- and extra-mitochondrial damage. SARS-COV2 propagates through altering or changing various pathways, such as autophagy, UPR stress, MPTP and NLRP3 inflammasome. Thus, these pathways act as potential targets for viruses to facilitate their proliferation. Autophagy plays an essential role in SARS-COV2-mediated COVID-19 and modulates autophagy by using various drugs that act on potential targets of the virus to inhibit and treat viral infection. Modulated autophagy inhibits coronavirus replication; thus, it becomes a promising target for anti-coronaviral therapy. This review gives immense knowledge about the infections, mitochondrial modulations, and therapeutic targets of viruses.


Subject(s)
Autophagy , COVID-19/metabolism , Mitochondria/metabolism , Mitochondria/virology , Animals , Autophagy/drug effects , Humans , Mitochondrial Dynamics/drug effects , Mitophagy/drug effects , Virus Diseases/drug therapy , Virus Diseases/metabolism , COVID-19 Drug Treatment
7.
J Neurosci ; 41(25): 5338-5349, 2021 06 23.
Article in English | MEDLINE | ID: covidwho-1282334

ABSTRACT

Clinical reports suggest that the coronavirus disease-19 (COVID-19) pandemic caused by severe acute respiratory syndrome (SARS)-coronavirus-2 (CoV-2) has not only taken millions of lives, but has also created a major crisis of neurologic complications that persist even after recovery from the disease. Autopsies of patients confirm the presence of the coronaviruses in the CNS, especially in the brain. The invasion and transmission of SARS-CoV-2 in the CNS is not clearly defined, but, because the endocytic pathway has become an important target for the development of therapeutic strategies for COVID-19, it is necessary to understand endocytic processes in the CNS. In addition, mitochondria and mechanistic target of rapamycin (mTOR) signaling pathways play a critical role in the antiviral immune response, and may also be critical for endocytic activity. Furthermore, dysfunctions of mitochondria and mTOR signaling pathways have been associated with some high-risk conditions such as diabetes and immunodeficiency for developing severe complications observed in COVID-19 patients. However, the role of these pathways in SARS-CoV-2 infection and spread are largely unknown. In this review, we discuss the potential mechanisms of SARS-CoV-2 entry into the CNS and how mitochondria and mTOR pathways might regulate endocytic vesicle-mitochondria interactions and dynamics during SARS-CoV-2 infection. The mechanisms that plausibly account for severe neurologic complications with COVID-19 and potential treatments with Food and Drug Administration-approved drugs targeting mitochondria and the mTOR pathways are also addressed.


Subject(s)
COVID-19/complications , Nervous System Diseases/virology , Neurons/virology , Animals , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , Humans , Mitochondria/metabolism , Mitochondria/virology , Nervous System Diseases/drug therapy , Nervous System Diseases/metabolism , Nervous System Diseases/pathology , Neurons/metabolism , SARS-CoV-2/pathogenicity , TOR Serine-Threonine Kinases/metabolism , Post-Acute COVID-19 Syndrome , COVID-19 Drug Treatment
8.
Pharmacol Ther ; 224: 107825, 2021 08.
Article in English | MEDLINE | ID: covidwho-1117458

ABSTRACT

Coronaviruses (CoVs) are a group of single stranded RNA viruses, of which some of them such as SARS-CoV, MERS-CoV, and SARS-CoV-2 are associated with deadly worldwide human diseases. Coronavirus disease-2019 (COVID-19), a condition caused by SARS-CoV-2, results in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) associated with high mortality in the elderly and in people with underlying comorbidities. Results from several studies suggest that CoVs localize in mitochondria and interact with mitochondrial protein translocation machinery to target their encoded products to mitochondria. Coronaviruses encode a number of proteins; this process is essential for viral replication through inhibiting degradation of viral proteins and host misfolded proteins including those in mitochondria. These viruses seem to maintain their replication by altering mitochondrial dynamics and targeting mitochondrial-associated antiviral signaling (MAVS), allowing them to evade host innate immunity. Coronaviruses infections such as COVID-19 are more severe in aging patients. Since endogenous melatonin levels are often dramatically reduced in the aged and because it is a potent anti-inflammatory agent, melatonin has been proposed to be useful in CoVs infections by altering proteasomal and mitochondrial activities. Melatonin inhibits mitochondrial fission due to its antioxidant and inhibitory effects on cytosolic calcium overload. The collective data suggests that melatonin may mediate mitochondrial adaptations through regulating both mitochondrial dynamics and biogenesis. We propose that melatonin may inhibit SARS-CoV-2-induced cell damage by regulating mitochondrial physiology.


Subject(s)
COVID-19 Drug Treatment , Melatonin/pharmacology , Mitochondria/pathology , Aged , Animals , Antioxidants/administration & dosage , Antioxidants/pharmacology , COVID-19/complications , COVID-19/virology , Coronavirus Infections/complications , Coronavirus Infections/virology , Female , Humans , Melatonin/administration & dosage , Mitochondria/drug effects , Mitochondria/virology , Severe Acute Respiratory Syndrome/complications , Severe Acute Respiratory Syndrome/virology , Virus Replication
9.
Free Radic Biol Med ; 163: 153-162, 2021 02 01.
Article in English | MEDLINE | ID: covidwho-1065088

ABSTRACT

Nitric oxide (NO) is a free radical playing an important pathophysiological role in cardiovascular and immune systems. Recent studies reported that NO levels were significantly lower in patients with COVID-19, which was suggested to be closely related to vascular dysfunction and immune inflammation among them. In this review, we examine the potential role of NO during SARS-CoV-2 infection from the perspective of the unique physical, chemical and biological properties and potential mechanisms of NO in COVID-19, as well as possible therapeutic strategies using inhaled NO. We also discuss the limits of NO treatment, and the future application of this approach in prevention and therapy of COVID-19.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Anticoagulants/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Lung/drug effects , Nitric Oxide/therapeutic use , Administration, Inhalation , Anti-Inflammatory Agents/blood , Anticoagulants/blood , Antiviral Agents/blood , COVID-19/blood , COVID-19/pathology , COVID-19/virology , Endothelial Cells/drug effects , Endothelial Cells/pathology , Endothelial Cells/virology , Humans , Inflammation , Lung/blood supply , Lung/virology , Mitochondria/drug effects , Mitochondria/virology , Nitric Oxide/blood , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Severity of Illness Index , Vasodilation/drug effects
10.
Cell Death Dis ; 11(12): 1042, 2020 12 08.
Article in English | MEDLINE | ID: covidwho-969908

ABSTRACT

COVID-19, caused by SARS-CoV-2, is an acute and rapidly developing pandemic, which leads to a global health crisis. SARS-CoV-2 primarily attacks human alveoli and causes severe lung infection and damage. To better understand the molecular basis of this disease, we sought to characterize the responses of alveolar epithelium and its adjacent microvascular endothelium to viral infection under a co-culture system. SARS-CoV-2 infection caused massive virus replication and dramatic organelles remodeling in alveolar epithelial cells, alone. While, viral infection affected endothelial cells in an indirect manner, which was mediated by infected alveolar epithelium. Proteomics analysis and TEM examinations showed viral infection caused global proteomic modulations and marked ultrastructural changes in both epithelial cells and endothelial cells under the co-culture system. In particular, viral infection elicited global protein changes and structural reorganizations across many sub-cellular compartments in epithelial cells. Among the affected organelles, mitochondrion seems to be a primary target organelle. Besides, according to EM and proteomic results, we identified Daurisoline, a potent autophagy inhibitor, could inhibit virus replication effectively in host cells. Collectively, our study revealed an unrecognized cross-talk between epithelium and endothelium, which contributed to alveolar-capillary injury during SARS-CoV-2 infection. These new findings will expand our understanding of COVID-19 and may also be helpful for targeted drug development.


Subject(s)
COVID-19/pathology , Cell Communication/physiology , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Cell Line , Coculture Techniques , Down-Regulation , Endothelial Cells/cytology , Endothelial Cells/metabolism , Endothelial Cells/virology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Epithelial Cells/virology , Humans , Microscopy, Electron, Transmission , Mitochondria/pathology , Mitochondria/virology , Proteome/metabolism , Proteomics/methods , Pulmonary Alveoli/cytology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Serine Endopeptidases/metabolism , Up-Regulation
13.
Cell Syst ; 11(1): 102-108.e3, 2020 07 22.
Article in English | MEDLINE | ID: covidwho-610157

ABSTRACT

SARS-CoV-2 genomic and subgenomic RNA (sgRNA) transcripts hijack the host cell's machinery. Subcellular localization of its viral RNA could, thus, play important roles in viral replication and host antiviral immune response. We perform computational modeling of SARS-CoV-2 viral RNA subcellular residency across eight subcellular neighborhoods. We compare hundreds of SARS-CoV-2 genomes with the human transcriptome and other coronaviruses. We predict the SARS-CoV-2 RNA genome and sgRNAs to be enriched toward the host mitochondrial matrix and nucleolus, and that the 5' and 3' viral untranslated regions contain the strongest, most distinct localization signals. We interpret the mitochondrial residency signal as an indicator of intracellular RNA trafficking with respect to double-membrane vesicles, a critical stage in the coronavirus life cycle. Our computational analysis serves as a hypothesis generation tool to suggest models for SARS-CoV-2 biology and inform experimental efforts to combat the virus. A record of this paper's Transparent Peer Review process is included in the Supplemental Information.


Subject(s)
Betacoronavirus/genetics , Cell Nucleolus/virology , Coronavirus Infections/virology , Mitochondria/virology , Pneumonia, Viral/virology , RNA, Viral/metabolism , Betacoronavirus/metabolism , COVID-19 , Cell Nucleolus/metabolism , Databases, Genetic , Genome, Viral , Humans , Machine Learning , Mitochondria/metabolism , Models, Genetic , Pandemics , RNA, Viral/genetics , SARS-CoV-2
14.
Am J Physiol Cell Physiol ; 319(2): C258-C267, 2020 08 01.
Article in English | MEDLINE | ID: covidwho-574827

ABSTRACT

Because of the ongoing pandemic around the world, the mechanisms underlying the SARS-CoV-2-induced COVID-19 are subject to intense investigation. Based on available data for the SARS-CoV-1 virus, we suggest how CoV-2 localization of RNA transcripts in mitochondria hijacks the host cell's mitochondrial function to viral advantage. Besides viral RNA transcripts, RNA also localizes to mitochondria. SARS-CoV-2 may manipulate mitochondrial function indirectly, first by ACE2 regulation of mitochondrial function, and once it enters the host cell, open-reading frames (ORFs) such as ORF-9b can directly manipulate mitochondrial function to evade host cell immunity and facilitate virus replication and COVID-19 disease. Manipulations of host mitochondria by viral ORFs can release mitochondrial DNA (mtDNA) in the cytoplasm and activate mtDNA-induced inflammasome and suppress innate and adaptive immunity. We argue that a decline in ACE2 function in aged individuals, coupled with the age-associated decline in mitochondrial functions resulting in chronic metabolic disorders like diabetes or cancer, may make the host more vulnerable to infection and health complications to mortality. These observations suggest that distinct localization of viral RNA and proteins in mitochondria must play essential roles in SARS-CoV-2 pathogenesis. Understanding the mechanisms underlying virus communication with host mitochondria may provide critical insights into COVID-19 pathologies. An investigation into the SARS-CoV-2 hijacking of mitochondria should lead to novel approaches to prevent and treat COVID-19.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/virology , DNA, Mitochondrial/genetics , Mitochondria/genetics , Pneumonia, Viral/virology , RNA, Viral/genetics , Adaptive Immunity , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/growth & development , Betacoronavirus/immunology , Betacoronavirus/metabolism , COVID-19 , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , DNA, Mitochondrial/metabolism , Gene Expression Regulation, Viral , Host Microbial Interactions , Humans , Immunity, Innate , Mitochondria/immunology , Mitochondria/metabolism , Mitochondria/virology , Pandemics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , Pneumonia, Viral/metabolism , SARS-CoV-2 , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL